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ABSTRACT 

The width of the mixed zones between two successive bands in the isotachic train represents the loss in recovery yield achieved 
in displacement chromatography. Intuitively, this width depends on the mobile phase flow velocity, but no systematic study of this 

effect has yet been performed. On the other hand, constant pattern behavior and the theory of shock layer are well known in 
chemical engineering. Using this approach, and assuming competitive Langmuir isotherm behavior, an analytical equation is 
derived which relates the shock layer thickness (SLT) in displacement chromatography and the column design and operating 
parameters. Using this equation, it is possible to investigate the dependence of the SLT between two consecutive bands in the 
isotachic train on the mobile phase velocity, the concentration and the retention factor of the displacer and the separation factor 
of the two components. In displacement chromatography, the optimum mobile phase linear velocity (I&,) for minimum shock 
layer thickness, or maximum recovery yield depends not only on the coefficients of axial dispersion and mass transfer resistance of 
the two components, as does the optimum mobile phase velocity (u&,,) in linear chromatography, but also on the retention factor 
and the concentration of the displacer. The results of the study of this analytical equation are in excellent agreement with those of 
numerical calculations. 

INTRODUCTION 

Although suggested by Tswett [l], displace- 
ment chromatography was really introduced by 
Tiselius and Claeson [2] and Spedding [3] in the 
1940s. Gluckauf [4] developed its theory soon 
afterwards in the case of Langmuir isotherm 
behavior. He also recognized that a self-sharp- 
ening effect of thermodynamic origin (due to 
the non-linear behavior of the isotherm) coun- 
teracts the band spreading due to the finite rate 
of mass transfer [5]. Later, Helfferich and Klein 
[6] and Rhee and Amundson [7] completed the 
theoretical study of displacement in the frame- 
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work of the ideal model. No general theory is 
available in the equilibrium-dispersive and kinet- 
ic models, although numerical solutions have 
been published and studied [&lo]. Although 
displacement has been widely used in the past 
for preparative applications [2,3,11], it fell into 
oblivion as a practical technique shortly after 
World War II. In spite of systematic efforts 
[12,13] to reintroduce it as a preparative method 
of separation, its renaissance is considerably 
slowed by the lack of understanding of many 
issues of critical importance in actual practice. 
One of them is related to the mixed zone 
between consecutive bands in the isotachic train. 

The ideal model predicts that two consecutive 
bands are separated by a concentration shock. 
There are no mixed zones between consecutive 
bands, hence complete recovery of the feed as 
separated products is possible. This ideal situa- 
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tion is, of course, not observed with actual 
columns. A mixed zone of finite width takes 
place between consecutive bands. Calculations 
show that, under experimental conditions giving 
a high value of the production rate, the recovery 
yield achieved in displacement chromatography 
because of the finite width of this mixed zone is 
as low as, or even lower than, the recovery yield 
in overloaded elution chromatography [14]. Ad- 
mittedly, the isotachic train is not yet formed 
under these conditions, which contributes much 
to the reduced yield. Nevertheless, as most 
practitioners seem to prefer performing displace- 
ment separations under isotachic conditions and 
would like to improve recovery yields as much as 
possible, it is important to study the parameters 
which control the width of these mixed bands. 
Unfortunately, little information and much con- 
tradiction is found on this topic in the literature. 

Horvath and co-workers [12,13,15,16] re- 
ported that the resolution between adjacent 
bands decreases with increasing flow-rate. They 
suggested that displacement development should 
be carried out at a flow-rate 2-10 times lower 
than that used in elution under linear conditions 
[13]. They also reported that operating the 
column at high flow-rates, in order to increase 
the production rate, is done at the expense of a 
markedly decreased recovery yield [13], and 
recommended flow-rates much lower than those 
used typically in elution with similar columns. 
This result is in agreement with the observation 
made by Cardinali et al. [17] that the overlap 
between the last component and the displacer 
decreases markedly with decreasing flow-rate. 
On the other hand, Subramanian and co-workers 
[8,18] reported an opposite result. They ob- 
served that the flow-rate does not affect much 
the band profile in the flow-rate range 0.1-l 
ml/min (for a 4.6 mm I.D. column). Similarly, 
from the results of Cardinali et al. [17], the 
degree of overlap between successive bands of 
the isotachic train seems to be little affected by 
the change in flow-rate made by these workers. 
These apparent contradictions deserve some 
clarification. 

We know that the concentration shocks pre- 
dicted by the ideal model for the chromatograms 
obtained with infinitely efficient columns cannot 
actually take place. Real columns have a finite 

efficiency. The concentration shocks that non- 
linear equilibrium isotherms tend to build up are 
eroded by the effects of axial dispersion and of 
the finite rate of the mass transfer kinetics. Very 
steep fronts, in which the concentrations of one 
or several components change rapidly, take place 
instead. These regions are called shock layers. 
When adsorption isotherms are convex upwards, 
as they should be in displacement chromatog- 
raphy, the breakthrough curves observed in 
frontal analysis have a very steep front [11,19]. 
Similarly, the boundaries between successive 
zones in displacement chromatography are also 
very steep. When the isotachic train has been 
formed, it propagates unchanged. This means 
that a constant pattern or steady-state, dynamic 
equilibrium is reached between the self-sharpen- 
ing trend driven by thermodynamics and the 
dispersive effects of the finite column efficiency. 
The boundaries between two successive bands 
are binary shock layers. The simplest and most 
useful model for the profiles of these layers has 
been derived and studied by Rhee and co-work- 
ers [20-231. This theory results into a fairly 
simple expression for the shock layer thickness 
(SLT) in the case of Langmuir adsorption be- 
havior [23]. 

In a previous paper [24], we presented the 
results of a theoretical and experimental inves- 
tigation of the dependence of the SLT in single 
component frontal analysis on the two main 
operating parameters which control it, the mo- 
bile phase velocity and the height of the concen- 
tration step injected into the column. The SLT is 
simply related to the column height equivalent to 
a theoretical plate (HETP), the height of the 
concentration step and the isotherm. While there 
is an optimum linear velocity, u&, for minimum 
HETP in linear chromatography, there is an 
optimum linear velocity, u$, for minimum SLT 
in frontal analysis. Both velocities are related, 
but may be very different. u$ depends strongly 
on the limit retention factor or initial slope of the 
isotherm 1241. Therefore, a similar investigation 
made in displacement chromatography could 
help in understanding the factors controlling the 
thickness of the intermediate, mixed zones be- 
tween successive bands in the isotachic train in 
displacement chromatography. 

The theory of multi-component shock layers 
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has been developed by Rhee and Amundson [23] 
and applied by them to the study of shock layer 
profiles in multi-component frontal analysis. Re- 
cently, Guiochon and co-workers [24-271 used 
these results to study the accuracy of isotherm 
measurements by binary frontal analysis, the 
optimization of the experimental conditions and 
some related problems. In this paper, we apply 
the analytical equation derived by Rhee and 
Amundson for the calculation of SLT to the 
study of the width of intermediate mixed zones 
in displacement chromatography, for mixtures of 
components following the competitive Langmuir 
isotherm model. We discuss the influence on the 
SLT of the mobile phase velocity, the concen- 
tration and the retention factor of the displacer 
and the separation factor between the two com- 
ponents. 

THEORY 

We first recall the definition of shock layers, 
and briefly explain how the work of Rhee and 
Amundson [21] on single-component shock 
layers can be extended to binary shock layers 
[23]. Then, we derive an analytical equation 
relating the SLT in displacement chromatog- 
raphy and the experimental conditions. Through- 
out the discussion, we assume competitive Lang- 
muir isotherms. For the sake of simplicity, the 
isotherm is written as 

qi = 1 + r1 + r, (1) 

where qi is the concentration of component i at 
equilibrium in the stationary phase, q, is the 
saturation capacity of the stationary phase and 
Ii = biCi, bi being the coefficient of the Lang- 
muir isotherm and Ci the mobile phase concen- 
tration of i. 

Because the shock layer theory, as all theoret- 
ical models of chromatography so far, consider 
the column as radially homogeneous, and hence 
neglects the possible intluence of radial perturba- 
tions in the packing density, we consider only the 
abscissa in discussing column properties. Similar- 
ly, the mobile phase flow velocity, not its flow- 
rate, is significant in the study of the mass 
transfer resistance. Therefore, we give the shock 
layer thickness in time and distance units, not in 

volume as suggested by a reviewer. Multiplica- 
tion by the appropriate value of the column 
cross-sectional area would supply easily these 
data, when needed. 

The SLT in single-component frontal analysis 
In frontal analysis, a stream of constant con- 

centration is injected into the column. Assuming 
that the column is initially empty, the front or 
breakthrough curve propagates along the column 
at a constant velocity, U, [4-71: 

with 

63 
V+r, 

(2) 

where u is the mobile phase velocity, kh is the 
retention factor, a = klJF and b are the parame- 
ters of the Langmuir isotherm, F is the phase 
ratio and CO is the step concentration injected. 
The SLT is the distance, AqX, between two 
concentrations CT and C: inside the column 
(Fig. l), or the time, Aq,, separating the elution 
of these two concentrations: 

i4.0 IA.0 li.0 Ii.0 

TIME 
Fig. 1. Definition of the shock layer thickness (SLT). The 
curve shows the concentration profile, C(t), of the break- 
through curve in single-component frontal analysis obtained 
for the injection of a step from C = 0 to C = C, = 10 mM. 
Concentration in mM, time in min. 
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cy = ec, (44 

cy = (1 -e)c, (4b) 

where 0 is an arbitrary number lower than 0.5, 
usually between 0.01 and 0.05. The SLT can be 
calculated by introducing the dimensionless mov- 
ing coordinate: 

is a shock layer between two consecutive bands. 
The train moves at the velocity 

(8) 

x-tu 
r=L 

The plateau concentration of each band in the 
isotachic train is determined by the displacer 
concentration. It is given by 

The SLT is given by 

AS = S(C;) - S(G) 

An, = L AC 

Av,=+.Ag 
s 

(6a) 

(6b) 

(6~) 

(9) 

where I, = bdCd and b, and C, are the Lang- 
muir isotherm parameter and the injection con- 
centration of the displacer, respectively. 

where L is the column length. 
Rhee and Amundson [21] have shown that the 

SLT is given by the following equation: 

At= 
D,(l+ K) 1 r, + 2 

KuL + (1+ &k,L r, 

All the previous results are given by the ideal 
model. They are still valid with actual columns 
having a finite efficiency. However, the rear 
boundary of each band in the isotachic train is 
mixed with the front boundary of the following 
band (Fig. 2). The SLT is given by the same 
definition as for a single component (compare 
Figs. 1 and 2). By replacing the plateau injection 
concentration, C,, in eqn. 6 by the plateau 

- In 
I I 
9 (7a) 

A = W+K)+ I 1 r, + 2 
rl, KU (1 +UK)k, r, 

. In 

where D, is the axial dispersion coefficient, 
including the effects of molecular axial diffusion, 
tortuosity and eddy diffusion [28,29], and k, is a 
lumped mass transfer coefficient [20-23,301. I, = 
bC, is the dimensionless sample injection con- 
centration. 

The SLT in multi-component displacement 
chromatography 

When the formation of the isotachic train is 
achieved in displacement chromatography, all 
the bands migrate at the same velocity as the 
displacer front. A constant pattern, i.e., an 
asymptotic solution, has been reached and there 

: 
: 
: 
: 
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.’ 
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1.0 4 i 
Elution Time (l/100 min) 
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Fig. 2. Definition of the shock layer thickness (SLT) be- 
tween two bands of the isotachic train in displacement 
chromatography. CP, and C,, are the plateau concentra- 
tions; C:., = (1 - O)C, i, &,. =eC,,,, C;,i+, = (1 - 0>C, ,+1, 
C p.r+*.. = q,i+1. Aq, ‘is the shock layer thickness in t’ime 
unit. 
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concentration, Cp i, we obtain for the SLT in 
multi-component displacement chromatography 

(10) 

where 

Rhee and Amundson [23] have shown that the 
concentration profiles in the shock layers in each 
mixed zone are described by the following partial 
differential equation: 

h _d’ci 1 
Pest d(‘+ z+ [ 

h(l-A) dCi -- 
I St dt 

= hF9(Ci, cp,i9 ci+19 cr,i+l) (12) 

where i is the rank of the component in the 
train, between 1 and R. The function $(C,, C,,,i, 

ci+l, Cp,i+l) depends on the parameters of the 
multi-component isotherm. Pe and St are the 
Peclet and Stanton numbers, respectively. 

Using the hodograph transform, Rhee and 
Amundson [23] have also shown that a plot of Ci 
WVMU Ci+ 1 is a straight line (solid line in Fig. 3), 
provided that these two components have the 
same apparent dispersion coefficient, D,, and 
the same rate coefficient, k,, in addition to the 
competitive Langmuir isotherm behavior. The 
equation of this straight line is 

‘p,i 
Ci = - Cp,i+, ’ ‘i+l + ‘p,i (13) 

Therefore, the function .f9(Ci, Cp,i, Ci+i, C,,i+l) 
can be decoupled into two functions, 9(Ci, C,,i, 

Cp,i+i) and s(Cf+19 Cp,i, Cp,i+l), and the follow- 
ing equations give -the SLT in displacement 
chromatography: 

1 

19 

g- 

0.0 10.0 20.0 30.0 

Cl 

Fig. 3. Hodograph plot of the three chromatograms in Fig. 4. 
Solid line: k,., = k,., = k,,, = 20 min-’ and k,., = k,,, = kt,d_= 
200 min-‘. Dashed line: k, , =2CJ mine’, k,,, = 200 min I, 

k, = :’ Loo nlhl-‘. Concentrations in mglml. 

I 

x I=1 lnlyl (14b) 

iA%1 = [ 
Cl+ Kd)‘R 

K u2 
d 

W) 

Hence, the SLT in displacement chromatography 
depends on the axial dispersion coefficient, the 
mass transfer coefficient and the separation fac- 
tor, a, of the two adjacent band components, 
and on the injection concentration and retention 
factor, kh of the displacer. The SLT does not 
depend on the retention factor or the feed 
concentration of either adjacent components. 
Obviously, when the isotachic train is formed, 
the concentration of each band reaches a plateau 
concentration which is determined by the con- 
centration of the displacer. 

The values of the SLT given by eqn. 14b are 
compared in Table I with those derived from 
chromatograms obtained by numerical integra- 
tion of the system of equations of the transport- 
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TABLE I 

SHOCK LAYER THICKNESS AND MASS TRANSFER COEFFICIENT 

Parameter” Shock layer thickness (mm)” Mass transfer coefficient 
k, (min-I)’ 

lr 2f 2r d Component 1 Component 2 Displacer 

N 2.175 2.175 2.020 2.020 20 20 20 
T 2.033 2.033 2.033 2.033 
N 1.691 1.691 1.619 1.619 200 200 200 
T 1.513 1.513 1.513 1.513 
N 1.918 1.905 1.640 1.640 20 200 100 

a N = SLT from numerical calculation; T = SLT from eqn. 14b. 
b lr = Rear shock for the first component; 2f = front shock for the second component; 2r = rear shock for the second component; 

d = front shock for the displacer (see Fig. 2). 
‘D, 0.00137 cm*/min. 

dispersive model [31]. The calculated chromato- 
grams are shown in Fig. 4. It is seen in Table I 
that, when the two adjacent components have 
the same axial dispersion and kinetic coefficients, 
the SLT of the rear shock of the less retained 
band is the same as the SLT of the front shock of 
the more retained band. The SLT changes from 
pair to pair of components, but it is the same for 
all pairs having the same separation factor. 

If the two adjacent components do not have 

a- 

a- jr--’ 
I 

0 

P .’ Y I 

I I __--_. \ 

Fig. 4. Overlay of three displacement chromatograms (0 = 
0.1). Dotted line: k,, =k,,=k,,,=20 min-‘. Dashed line: 
k,,, =k,,, = k,,, = 200 min”. Chain dashed line: k, r =20, 
k,,, = 200, k,,, = 100 mit-‘. The axial dispersion coefficient is 1 
the same for all the components, 0.00137 cm2/min. Langmuir 
isotherm parameters: a1 =7.0, a, = 11.2, ad = 17.9, b, = 
0.07, b, = 0.079, b, = 0.66. Concentration in mglml, time in 
min. 

the same axial dispersion and kinetic coefficients, 
the plot of Ci verSu.r C,+, is not a straight line 
(see chain line in Fig. 3), and the decoupling of 

p(ci9 cp+i9 ci+l, Cp,i+t) is not possible, even in 
the case of the competitive Langmuir isotherm 
model. In this case, no simple analytical solution 
for the SLT can be derived. However, the SLT 
will be between the two values calculated using 
eqn. 14 with the smaller k, (e.g., 20 in Table I) 
and the larger k, (200 in Table I). Therefore, a 
good approximation of the SLT can still be 
obtained from eqn. 14. 

DISCUSSION 

We now discuss the consequences of eqn. 14, 
the dependence of the SLT on the characteristics 
of the displacer, the mobile phase velocity and 
the separation factor. 

Dependence of the SLT on the retention factor 
and the concentration of the displacer 

The SLT in displacement chromatography 
does not depend directly on the retention factors 
of either the components involved or their con- 
centrations, but it does depend on them indirect- 
ly, through Kd. The condition for achievement of 
the isotachic train is that the value of K (eqn. 3) 
is the same for all the components of the mix- 
ture, and for the displacer: 
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K,=K*=K, =...= J& 
d 

(1% 

Hence, the plateau concentration of each com- 
ponent in theisotachic train is obtained by solv- 
ing eqn. 15 for CP,!. This explains why in dis- 
placement, unlike m frontal analysis, the re- 
tention factors and the concentrations of the 
sample components do not appear in eqn. 14. 

Figs. 5 and 6 illustrate the dependence of the 
SLT on the retention factor, kA,d (Fig. 5), and 
on the injection concentration, C, (Fig. 6), of 
the displacer. We see (Fig. 5) that, as the 
retention factor of the displacer increases, the 
SLT decreases rapidly at first. Then, Aqz tends 
slowly towards 0 as k6,d increases indefinitely. 
Aq,, on the other hand, reaches a minimum 
beyond which it starts to increase slowly, with a 
slanted asymptote. Differentiation of eqn. 14c by 
respect to Kd shows that the optimum value of 
k’ 0.d for minimum SLT, (SLT in time units) 

. ...‘. 
,...’ 

_....’ 

,...‘. 
,/ 

_...” 

,....- 

s ..’ 

,,....” 
._/. 

_._..’ 

; m-1 . ...” 
,.,...” 

_...” 

$ ; C.,.,_,,,._....~ / 

.1----_ 
0.0 40.0 00.0 

CWZNTRATION OF DlSPUfXR(C',)(ng/ml ) 

Fig. 6. Plot of the SLT versus the displacer concentration, 
C,, based on eqn. 14b or 14c. D, = 0.00137 cm*/min, k, = 20 
mill-‘, u = 0.3 cm/min, 0 = 0.05, kked = 5, a = 1.5. Langmuir 
parameter b = 0.5 ml/mg. Solid line: bx versus C,,. Dotted 
line: Aq, versus C,. 

corresponds to 

Kd = 1 

k;,d = 1+ bdCd 

‘L... 

0 “-----~~~~~~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
I I I I 

0.0 10.0 20.0 30.0 40.0 

RETENTlON FACTOR OF DISPLACEFl(k’,) 

(164 

WW 

(164 

Fig. 5. Plot of the SLT versus the retention factor of the 
displacer, kAvd, baaed on eqn. 14b or 14c. D, =0.00137 
cm’lmin, k, = 20 ruin-‘, ll = 0.3 cnI/min, e = 0.05, Cd = 20 
mg/ml, (I = 1.5. Langmuir isotherm parameter b, = 0.5 ml/ 
mg. Dotted line: Aq* versus k;,d. Solid line: AT, versus kh,d. 

Depending whether the choice of the displacer 
is restricted or not, these equations define an 
optimum of the displacer retention factor (Fig. 
5) or of its concentration (Fig. 6) for achieving 
minimum Aq,, but there are no minima for AqX. 
As illustrated in Fig. 6, AqX always increases with 
increasing displacer concentration. This result is 
important because it is just the opposite of what 
happens in single-component frontal analysis, 
where the SLT decreases with increasing feed 
concentration. 

Dependence of the SLT on the mobile phase 
linear velocity 

Fig. 7 shows three overlaid displacement chro- 
matograms. The profiles of the isotachic train 
were calculated at three different mobile phase 
linear velocities. The values of A,, and Aqt 
derived from these chromatograms are compared 
with those given by eqns. 14b and 14c in Figs. 8 
and 9 respectively, showing the expected agree- 
ment. Fig. 8 shows the plot of AqX verr’sus the 
linear velocity, u. The curve obtained is very 
similar to the plot of the column HETP versus u 
in linear chromatography. Both curves exhibit a 
minimum, demonstrating the existence of an 
optimum mobile phase velocity for which the 
separation performance will be best. 



22 J. Zhu and G. Guiochon ! J. Chromatogr. A 659 (1994) 15-25 

1 

i6.0 6b.O 6i.O 

LENGTH (cm) 

Fig. 7. Four-component displacement separations at three 
different mobile phase velocities. Chain line, II = 2 cmlmin; 
dotted line, u = 1 cm/mm; solid line, u = 0.2 cmlmin. D, = 
0.00137 cm’/min, k, = 20 min-‘. Langmuir isotherm parame- 
ters: a,=l.S, a,=2.25, a,=4.0, a4=6.0, ~~~9.0, b,= 
0.04, b,=0.07, b,=0.12, b,=0.18, b,=0.6. 

The dependence of D, on the mobile phase 
velocity has been discussed abundantly in linear 
chromatography. We assume in this work that 
the molecular diffision coefficients and the 
kinetic coefficients are independent of the con- 
centration. The classical equations of Van Deem- 

6 

%I 
d 

0 

. 

4 

1 I I 

0 0.5 1.0 1.5 2.0 

Mobile Phase Velocity (cm/min) 

Fig. 8. Aqx versus mobile phase velocity. Solid line: calcula- 
tion from eqn. 14b (a = 1.5, f3 = 0.05). Symbols: AnI from 
the numerical calculations in Fig. 7. 

b. 0 0.6 1.0 1.5 2.0 

Mobile Phase Velocity (cm/min) 

Fig. 9. Same as Fig. 8, but An, versus mobile phase velocity. 

ter et al. [28] and Knox and Saleem [29] give, 
respectively, 

2D,=Au+B (1% 

20, = B + Ad/3 (17b) 

We use here the former, Van Deemter equation. 
Differentiation of eqn. 14b with respect to u 
shows that the SLT is minimum for the following 
value of the linear velocity: 

(18) 

where Kd refers to the displacer and the co- 
efficients D, and k, are those of the two com- 
ponents considered. Note that in the derivation 
of eqn. 14 it was assumed that these coefficients 
are the same for two successive components. 
Remarkably, this equation is otherwise the same 
as that found in frontal analysis. The optimum 
velocity for minimum shock layer thickness in 
displacement chromatography is the velocity for 
which the SLT of the displacer breakthrough 
curve is also a minimum. Both equations have 
for the limit when C, tends towards zero the 
optimum linear velocity in linear chromatog- 
raphy. 

We observe in Fig. 7 that the SLT of the front 
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shock of the first band is larger than the others. 
The reason is due to the difference in the 
dependence of single-component and binary SLT 
on the height of the concentration step. The 
opposite result could also be observed. Fig. 7 
shows also that the SLT does not vary much as 
long as the linear velocity remains close to r&. 
However, unlike the band width in linear chro- 
matography, the SLT broadens rapidly when the 
linear velocity increases well above z&. This 
explains the phenomenon reported by Horvlth 
and co-workers [12,16] of the existence of an 
optimum in the purity of the product collected 
when the flow-rate is decreased. The flow-rate 
below which the purity degrades rapidly corre- 
sponds to the optimum velocity given by eqn. 18. 

The optimum velocity depends also on the 
values of the axial dispersion coefficient, D,, and 
the kinetic coefficient, k,. However, apart from 
using small particles with well accessible pores, 
such as the packings developed for high-per- 
formance liquid chromatography, there is little 
we can do to achieve higher values of u!,,~. 

Dependence of the optimum velocity U$ on the 
retention factor and concentration of the 
displacer 

As shown by eqn. 18, the optimum velocity for 
minimum SLT depends on the Kd, and hence on 
the concentration and the retention factor of the 
displacer selected. The dependence of z.&, on 
the retention factor of the displacer is illustrated 
in Fig. 10. Differentiation of eqn. 18 shows that 

UL, is minimum for 

k;,d = 1 + I-, (19) 

u:,, is equal to u,Lp,, the optimum velocity for 
minimum HETP in linear chromatography, for 

k;,d = j/m (20) 

We see in Fig. 10, where plots of u&t and ukpt 
versus k;,d are shown, that us * 

d-pt when kh,d 
opt;l lJrr; th; 

is smaller than 
practice, this value of the retention facto: ,“f the 
displacer is nearly impossible to achieve, since it 
is almost always lower than 2. kA,d = 2 requires 
bdCd = 3, a value of the displacer concentration 
for which the equilibrium concentration of the 

RETENTION FACTOR OF DISPLACER(k’J 

Fig. 10. Dependence of u& on && for two displacer 
concentrations, 20 mglml (solid line) and 40 mglml (dashed 
line). b, = 0.1 mllmg, D, = 0.00137 cm*/min, k, = 20 min-‘. 
The dotted line shows u:,,~ versus k:. 

displacer in the stationary phase is q = 3q,/4, or 
75% of the saturation capacity. Hence, in almost 
all cases, z& is smaller than z&, and often 
much smaller. In almost all the reports on 
separations made with displacement chromatog- 
raphy, the displacers chosen have very large 
retention factors (about 10-15) [15,32]. This is 
why the optimum linear velocity uzpt in displace- 
ment is very low compared with the optimum 
linear velocity u,Lpt in linear chromatography, 
and why the production rate in displacement 
chromatography cannot be as large as antici- 
pated. 

Fig. 11 shows the dependence of ui,, on the 
concentration of the displacer for two values of 
its retention factor, 2 and 10. The dependence of 
US opt on the displacer concentration is very differ- 
ent for the two values of kh,d in the whole 
accessible concentration range, although both 
curves have minima. Rearrangement of eqn. 19 
shows that AqX is minimum for 

K=l 

thus 

(2la) 

’ is equal to uL (cf., straight lines in Fig. 11) 
ir?he displacer $rcentration [24] 
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Fig. 11. Dependence of uf, on the injection concentration 
of the displacer for two values of k&, 2 (solid line) and 10 
(dashed line). b, = 0.1 mllmg, D, = 0.00137 cm*/min, k, = 
20 min-‘. Dotted line: I& for k; = 2. Chain dashed line: utPt 
for k;, = 10. 

(22) 

For the lower value of k;),d, the optimum velocity 
increases nearly linearly with increasing concen- 
tration above ca. 30 mg/ml. For the higher 

Fig. 12. Dependence of the SLT on the separation factor. 
D, = 0.00137 cm*/min, k, = 20 min-I, 19 = 0.05, Kd = 0.45. 
Solid line: Aqx versus a. Dotted line: Aq versus a. 

value, in contrast, the optimum velocity remains 
nearly constant in that concentration range. 

Dependence of the SLT on the separation factor 
Fig. 12 shows the dependence of the SLT on 

the separation factor a = k;lk; of the two com- 
ponents. The SLT decreases dramatically as a 
increases from 1 to 1.3. For higher values of a, it 
slowly tends towards zero with increasing value 
of a. 

CONCLUSIONS 

This work has shown that the shock layer 
theory permits a detailed investigation of the 
optimization of the experimental conditions in 
displacement chromatography for the separation 
of multi-component mixtures which follow com- 
petitive Langmuir isotherm behavior. The theory 
explains the various empirical conclusions previ- 
ously reported, including the apparent contradic- 
tions between results obtained under different 
conditions. 

The conclusions of this work are extremely 
simple to apply, as it is not necessary to measure 
the isotherm parameters for the sample com- 
ponents. Only the single Langmuir isotherm 
parameters for the displacer and the separation 
factor at inl%rite dilution are required in all the 
equations. The results apply only to the isotachic 
train. Obviously, the production rate will be 
maximum if the sample size injected is such that 
this train is just formed when it reaches the 
outlet of the column. 

Obviously, the conclusions of this work, like 
those of most of the theoretical work published 
so far in chromatography, assume that the col- 
umn is radially homogeneous, hence that the 
column packing is homogeneous and perfect 
distribution of the sample takes place at the 
column inlet. These are ideal assumptions which 
have proved to be surprisingly satisfactory in 
liquid chromatography. Nevertheless, when pre- 
parative columns are used which have a diameter 
comparable to their length, new effects may arise 
owing to the random fluctuations which occur in 
the packing density. A detailed analysis of the 
phenomena which take place in actual columns 
will be published soon [33]. 
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